Evaluation of Abnormal Sound Detection using Multi-Stage GMM in Various Environments

نویسندگان

  • Akinori Ito
  • Akihito Aiba
  • Masashi Ito
  • Shozo Makino
چکیده

We have developed a method to automatically detect incidents by detecting abnormal sound events from audio signals recorded in real environments. The proposed method uses the multi-stage Gaussian Mixture Model (GMM), which learns rare sounds using multiple GMMs. In this work, we investigated the relationship between sound environment and detection performance, and found that the performance deteriorates in noisy environments, and that the performance largely depends on the SN ratio of the abnormal sounds. Next, we investigated methods for determining hyperparameters of the multi-stage GMM, which involves intermediate thresholds, numbers of mixtures of GMMs and the detection threshold. The experimental results showed that the combination of percentile-based threshold determination and Bayesian information criterion (BIC)-based mixture determination was most effective. However, when using the automaticallydetermined parameters, the detection performance deteriorated by up to 20%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks

Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...

متن کامل

Towards Smart-Cars That Can Listen: Abnormal Acoustic Event Detection on the Road

Even with the recent technological advancements in smartcars, safety is still a major challenge in autonomous driving. State-of-the-art self-driving vehicles mostly rely on visual, ultrasonic and radar sensors to assess the surroundings and make decisions. However, in certain driving scenarios, the best modality for context awareness is environmental sound. In this study, we propose an acoustic...

متن کامل

Eurospeech 2001 -scandinavia a Multi-snr Subband Model for Speaker Identication under Noisy Environments

This paper describes a multi-SNR subband model for speaker identi cation under noisy environments. The model consists of a set of subband GMMs (Gaussian Mixture Models) trained on speech data corrupted with white Gaussian noise at several SNRs. In the recognition stage, an optimal GMM that yields the maximum accumulated likelihood on the whole input frames is selected for each subband. Then the...

متن کامل

A fully automated approach for baby cry signal segmentation and boundary detection of expiratory and inspiratory episodes

The detection of cry sounds is generally an important pre-processing step for various applications involving cry analysis such as diagnostic systems, electronic monitoring systems, emotion detection, and robotics for baby caregivers. Given its complexity, an automatic cry segmentation system is a rather challenging topic. In this paper, a framework for automatic cry sound segmentation for appli...

متن کامل

Identification of abnormal audio events based on probabilistic novelty detection

This paper exploits the novelty detection technique towards identifying hazardous situations. The proposed system elaborates on the audio part of the PROMETHEUS database which includes heterogeneous recordings and was captured under real-world conditions. Three types of environments were used: smart-home, indoors public space and outdoors public space. The multidomain set of descriptors was for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011